Median is the line joining the midpoint of one side of a triangle to the opposite vertex. So, the coordinates of D would be(6+12,5+42)::(72,92)
ii)
P divides AD in the ratio 2:1.
A(x1,y1)=(4,2), D(x2,y2)=(72,92)
m:n=2:1
Using section formula, we get the coordinates of P.
P(x,y)=(nx1+mx2m+n,ny1+my2m+n)
=⎛⎜
⎜
⎜⎝1⋅4+2⋅722+1,1⋅2+2⋅922+1⎞⎟
⎟
⎟⎠
=(113,113)
iii)
Coordinates of E will be (52,3) and the coordinates of F=(5,72).
Coordinates of Q=(nx1+mx2m+n,ny1+my2m+n)
=⎛⎜
⎜
⎜⎝1⋅6+2⋅522+1,1⋅5+2⋅32+1⎞⎟
⎟
⎟⎠
=(113,113)
Coordinates of R=(nx1+mx2m+n,ny1+my2m+n)
=⎛⎜
⎜
⎜⎝1⋅1+2⋅52+1,1⋅4+2⋅722+1⎞⎟
⎟
⎟⎠
=(113,113)
iv)
The coordinates of P,Q and R are the same which is (113,113).
This point is called the centroid, denoted by G.
v)
Centroid of triangle ABC=(x1+x2+x33,y1+y2+y33)