Let a=a1i+a2j+a3k,b=b1i+b2j+b3k and c=c1i+c2j+c3k be three non-zero vectors such that c is a unit vector perpendicular to both a and b. If the angle between a and b is π/6, then ∣∣
∣∣a1a2a3b1b2b3c1c2c3∣∣
∣∣2 is equal to
A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
14(a21+a22+a23)(b21+b22+c23)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
34(a21+a22+a23)(b21+b22+c23)(c21+c22+c23)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C14(a21+a22+a23)(b21+b22+c23) According to the given conditions, c21+c22+c23=1,a⋅c=0,b⋅c=0 and cosπ6=√32=a1b1+a2b2+a3b3√a21+a22+a23√b21+b22+b23 Thus a1c1+a2c2+a3c3=0,b1c1+b2c2+b3c3=0 and √32(a21+a22+a23)1/2(b21+b22+b23)1/2=a1b1+a2b2+a3b3 Now, ∣∣
∣∣a1b1c1a2b2c2a3b3c3∣∣
∣∣2=∣∣
∣∣a1a2a3b2b2b3c1c2c3∣∣
∣∣∣∣
∣∣a1b1c1a2b2c2a3b3c3∣∣
∣∣ =∣∣
∣
∣∣a21+a22+a23a1b1+a2b2+a3b3a1c1+a2c2+a3c3a1b1+a2b2+a3b3b21+b22+b23b1c1+b2c2+b3c3a1c1+a2c2+a3c3b1c1+b2c2+b3c3c21+c22+c23∣∣
∣
∣∣ =∣∣
∣
∣∣a21+a22+a23a1b1+a2b2+a3b30a1b1+a2b2+a3b3b21+b22+b230001∣∣
∣
∣∣ =(a21+a22+a23)(b21+b22+b23)−(a1b1+a2b2+a3b3)2 =(a21+a22+a23)(b21+b22+b23) −34(a21+a22+a23)(b21+b22+b23) =14(a21+a22+a23)(b21+b22+b23)