Proving f is a bijection:
f = {(a, v), (b, u), (c, w)} and f : A → B
Injectivity of f: No two elements of A have the same image in B.
So, f is one-one.
Surjectivity of f: Co-domain of f = {u v, w}
Range of f = {u v, w}
Both are same.
So, f is onto.
Hence, f is a bijection.
Proving g is a bijection:
g = {(u, b), (v, a), (w, c)} and g : B → A
Injectivity of g: No two elements of B have the same image in A.
So, g is one-one.
Surjectivity of g: Co-domain of g = {a, b, c}
Range of g = {a, b, c}
Both are the same.
So, g is onto.
Hence, g is a bijection.
Finding fog:
Co-domain of g is same as the domain of f.
So, fog exists and fog : {u v, w} → {u v, w}
Finding gof:
Co-domain of f is same as the domain of g.
So, fog exists and gof : {a, b, c} → {a, b, c}