Let |A|=|aij|3×3≠0. Each element aij multiplied by ki−j. Let |B| be the resulting determinant, where k1|A|+k2|B|=0. Then k1+k2=
0
|A|=∣∣ ∣∣a11a12a13a21a22a23a31a32a33∣∣ ∣∣|B|=∣∣ ∣ ∣∣a11k−1a12k−2a13ka21a22k−1a23k2a31ka32a33∣∣ ∣ ∣∣=1k3∣∣ ∣ ∣∣k2a11ka12a13k2a21ka22a23k2a31ka32a33∣∣ ∣ ∣∣=1k3×k2×k∣∣ ∣∣a11a12a13a21a22a23a31a32a33∣∣ ∣∣=|A|k1|A|+k2|B|=0⇒|A|(k1+k2)=0⇒k1+k2=0