Let A=[aij] be 3×3 matrix given by aij=⎧⎪⎨⎪⎩(i+j2)+|i−j|2,ifi≠jij−(i.j)i2+j2,ifi=j⎫⎪⎬⎪⎭
where aij denotes element of ith row & jth column of matrix A.If A=pA2−qA−1−rI, then remainder when (p+q+r)11 is divided by 7 is
Open in App
Solution
A=⎡⎢⎣023203331⎤⎥⎦ |A|=32⇒A−1 will exist.
Characteristic equation of matrix A is |A−λI|=0 λ3−λ2−22λ−32=0
So A3−A2−22A=32I A2−A−22I=32A−1 A=A2−32A−1−22I
So p+q + r =55 5511=(56−1)11=(7K−1)
So remainder is 6