The correct option is D only I and IV
Aα=⎡⎢⎣cosα−sinα0sinαcosα0001⎤⎥⎦
(i) Consider, AαAβ=⎡⎢⎣cosα−sinα0sinαcosα0001⎤⎥⎦⎡⎢⎣cosβ−sinβ0sinβcosβ0001⎤⎥⎦
=⎡⎢⎣cos(α+β)−sin(α+β)0sin(α+β)cos(α+β)0001⎤⎥⎦
=Aα+β
Hence, AαAβ=Aα+β
(ii)Aαβ=⎡⎢⎣cos(αβ)−sin(αβ)0sin(αβ)cos(αβ)0001⎤⎥⎦
So, AαAβ≠Aαβ
(iii)Now, we will find Aα−1
Here, |Aα|=cos2α+sin2α=1
Now, adjAα=CT=⎡⎢⎣cosα−sinα0sinαcosα0001⎤⎥⎦T
⇒Aα=⎡⎢⎣cosαsinα0−sinαcosα0001⎤⎥⎦
⇒Aα−1=⎡⎢⎣cosαsinα0−sinαcosα0001⎤⎥⎦
⇒Aα−1=⎡⎢⎣cos−α−sin−α0sin−αcos−α0001⎤⎥⎦
Hence, Aα−1≠−Aα and Aα−1=A−α