we do not know whether ab<a+2ba+b or ab>a+2ba+b
Therefore, to compare these two numbers, let us compute ab−a+2ba+b
We have,
ab−a+2ba+b=a(a+b)−b(a+2b)b(a+b)a2+ab−ab−2b2b(a+b)=a2−2b2b(a+b)
∴ab−a+2ba+b>0
⇒a2−2b2b(a+b)>0
⇒a2−2b2>0
⇒a2>2b2
⇒a>√2b
and, ab−a+2ba+b<0
⇒a2−2b2b(a+b)<0
⇒a2−2b2<0
⇒a2<2b2
⇒a<√2b
Thus, ab>a+2ba+b, if a>√2b and ab<a+2ba+b if a<√2b.
So, we have the following cases:
Case I when a>√2b
In this case, we have
ab>a+2ba+b i.e., a+2ba+b<ab
We have to prove that
a+2ba+b<√2<ab
We have,
a>√2b
⇒a2>2b2
⇒a2+a2>a2+2b2 [adding a2 both sides]
⇒2a2+2b2>(a2+2b2)+2b2 [adding 2b2on both sides]
⇒2(a2+2ab+b2)>a2+4ab+4b2 [adding 4ab both sides]
⇒2(a+b)2>(a+2b)2
⇒√2(a+b)>a+2b
⇒√2>a+2ba+b
Again,
a>√2b⇒ab>√2
From (i) and (ii), we get
a+2ba+b<√2<ab
Case II when a<√2b
In this case, we have
ab<a+2ba+b
We have to show that ab<√2<a+2ba+b
We have,
a<√2b
⇒a2<2b2
⇒a2+a2<a2+2b2 [adding a2 on both sides]
⇒2a2+2b2<a2+4b2 [adding 2b2 on both sides]
⇒2a2+4ab+2b2<a2+4ab+4b2
⇒2(a+b)2<(a+2b)2
⇒√2<a+2ba+b
⇒a<√2b⇒ab<√2
From (iii) and (iv), we get
ab<√2<a+2ba+b
Hence √2 lies between ab and a+2ba+b