Let a and b be positive real numbers such that a+b=1. Prove that aabb+aabb≤1
Open in App
Solution
We have, 1=a+b=aa+bba+b=aabb+babb ∴1−aabb−abba=aabb+babb−aabb−abba=(aa−ba)(ab−bb) Now if a≤b, then aa≤ba and ab≤bb. If a≥b, then aa≥ba and ab≥bb. Hence the product is non-negative for all positive a and b. ∴aabb+abba≤1.