Let a and b be real numbers such that sina+sinb=1√2 and cosa+cosb=√62, then the value of sin(a+b) is
A
1√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
√32
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
12√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D√32 Given sina+sinb=1√2....(i) cosa+cosb=√62...(ii) On squaring both sides in Eq(i) we get sin2a+sin2b+2sinasinb=12...(iii) And squaring both sides in Eq(ii) we get cos2a+cos2b+2cosacosb=64=32...(iv) Now, by adding Eqs. (iii) and (iv) we get (sin2a+sin2b+2sinasinb)+(cos2a+cos2b+2cosacosb)=12+32 ⇒(sin2a+cos2a)+(sin2b+cos2b)+2(sinasinb+cosacosb)=42 ⇒1+1+2cos(a−b)=2 ∴cos(a−b)=0....(v) On multiplying Eqs (i) and (ii) we get (sina+sinb)(cosa+cosb)=1√2×√62 ⇒12(sin2a+sin2b)+sin(a+b)=√32 ⇒sin(a+b)cos(a−b)+sin(a+b)=√32 ⇒sin(a+b)=√32 (From Eq (v), cos(a−b)=0)