Given: A∩X=B∩X=ϕ and A∪X=B∪X
Let A=A∩(A∪X)
⇒A=A∩(B∪X) {∵A∪X=B∪X}
⇒A=(A∩B)∪(A∩X) {Using distributive law}
⇒A=(A∩B)∪ϕ {∵A∩X=ϕ}
⇒A=A∩B⋯(i)
Let B=B∩(B∪X)
⇒B=B∩(A∪X) {∵A∪X=B∪X}
⇒B=(B∩A)∪(B∩X) {Using distributive law}
⇒B=(B∩A)∪ϕ {∵A∩X=ϕ}
⇒B=B∩A
⇒B=A∩B⋯(ii)
From (i) and (ii),
A=B Hence proved.