wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let A and B be sets. If A ∩ X = B ∩ X = Φ and A ∪ X = B ∪ X for some set X, show that A = B.

(Hints A = A ∩ (A ∪ X), B = B ∩ (B ∪ X) and use distributive law)

Open in App
Solution

Let A and B be two sets such that A ∩ X = B ∩ X = f and A ∪ X = B ∪ X for some set X.

To show: A = B

It can be seen that

A = A ∩ (A ∪ X) = A ∩ (B ∪ X) [A ∪ X = B ∪ X]

= (A ∩ B) ∪ (A ∩ X) [Distributive law]

= (A ∩ B) ∪ Φ [A ∩ X = Φ]

= A ∩ B … (1)

Now, B = B ∩ (B ∪ X)

= B ∩ (A ∪ X) [A ∪ X = B ∪ X]

= (B ∩ A) ∪ (B ∩ X) [Distributive law]

= (B ∩ A) ∪ Φ [B ∩ X = Φ]

= B ∩ A

= A ∩ B … (2)

Hence, from (1) and (2), we obtain A = B.


flag
Suggest Corrections
thumbs-up
41
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Binary Operations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon