Let a and b be the points of local maximum and local minimum respectively of the function f(x)=2x3−3x2−12x. If A is the area of region bounded by y=f(x),x−axis, y−axis and x=b, then the value of 2A(in sq. units) is equal to
Open in App
Solution
Given: f(x)=2x3−3x2−12x. ⇒f′(x)=6x2−6x−12
For max./min, f′(x)=0 ∴6(x2−x−2)=0 ⇒x=2,−1
and f′′(x)=12x−6
Since f′′(−1)=−18<0, therefore x=−1 is point of local maximum. f′′(2)=18<0, therefore x=2 is point of local minimum. ∴a=−1 and b=2
Figure:
Required area A=−2∫0(2x3−3x2−12x)dx ⇒A=−[x42−x3−6x2]20 ⇒A=−[8−8−24]=24 sq. units ∴2A=48 sq. units