The correct option is A 73
Given that α and β are roots of x2−7x−3=0.
Thus, α2−7α−3=0 and β2−7β−3=0
⇒ α2−3=7α and β2−3=7β
Since, an=αn−βn, n≥1
⇒ a10=α10−β10, a8=α8−β8 and a9=α9−β9.
=α8×7α−β8×7β3(α9−β9) [from (i)]
=7(α9−β9)3(α9−β9)=73
Consider, a10−3a83a9
=(α10−β10)−3(α8−β8)3(α9−β9)
=α8(α2−3)−β8(β2−3)3(α9−β9)
Hence, the correct answer is option (a).