wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let A and B be two 3×3 invertible matrices such that A is an idempotent matrix and
det(adj B)=det(A)12+det(AAT)13+det(adj(A)I)14+L,
where L=limx0sin2x0ln(1+t3) dtx0(et1t)(tantt)(1cost) dt.
The absolute value of det(B) is

Open in App
Solution

det(adj B)=det(A)12+det(AAT)13+det(adj(A)I)14+L
As A is an idempotent matrix and invertible also, so
A2=AA1A2=A1A
A=I where I is an indentity matrix of order 3×3
Now, det(A)12=1
det(AAT)13=0det(adj AI)14=0

Now,
L=limx0sin2x0ln(1+t3) dtx0(et1t)(tantt)(1cost) dt
Using L'Hospital's Rule, we get
L=limx0ln(1+sin6x)2sinxcosx(ex1x)(tanxx)(1cosx)L=limx02xsin6x(ex1x)(tanxx)(1cosx)x2x2L=limx04x5(ex1x)(tanxx) (limx01cosxx2=12)

We know that
L1=limx0tanxxx3L1=limx0sec2x13x2L1=limx0tan2x3x2=13
Therefore, L=limx012x2ex1x
L=limx024xex1=24
So, det(adj B)=1+0+0+24
|B|2=25|B|=±5
Hence, the absolute value of det(B)=5

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Differentiability
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon