det(adj B)=det(A)12+det(A−AT)13+det(adj(A)−I)14+L
As A is an idempotent matrix and invertible also, so
A2=A⇒A−1A2=A−1A
∴A=I where I is an indentity matrix of order 3×3
Now, det(A)12=1
det(A−AT)13=0det(adj A−I)14=0
Now,
L=limx→0sin2x∫0ln(1+t3) dtx∫0(et−1−t)(tant−t)(1−cost) dt
Using L'Hospital's Rule, we get
L=limx→0ln(1+sin6x)2sinxcosx(ex−1−x)(tanx−x)(1−cosx)⇒L=limx→02xsin6x(ex−1−x)(tanx−x)(1−cosx)x2x2⇒L=limx→04x5(ex−1−x)(tanx−x) (∵limx→01−cosxx2=12)
We know that
L1=limx→0tanx−xx3⇒L1=limx→0sec2x−13x2⇒L1=limx→0tan2x3x2=13
Therefore, L=limx→012x2ex−1−x
⇒L=limx→024xex−1=24
So, det(adj B)=1+0+0+24
⇒|B|2=25⇒|B|=±5
Hence, the absolute value of det(B)=5