The correct options are
A P(AC|B)=2P(A|BC)
B P(B)=P(A|B)
D P(A|BC)=P(A∩B)
P(A∪B)=P(A)+P(B)−P(A∩B)
⇒58=38+12−P(A∩B)
⇒P(A∩B)=28=14
Now, P(AC|B)=P(AC∩B)P(B)
=P(B)−P(A∩B)P(B)
=1−2(14)
=12
and 2P(A|BC)=2P(A∩BC)P(BC)
=2(P(A)−P(A∩B))1−P(B)
=4(38−14)=12
P(AC|B)=2P(A|BC)
P(A|B)=P(A∩B)P(B)=14×21=12=P(B)
Again, P(AC|BC)=P(AC∩BC)P(BC)
=1−P(A∪B)1−P(B)
=2(1−58)=34
and P(B|AC)=P(B∩AC)1−P(A)
=P(B)−P(A∩B)5/8
=1/2−1/45/8
=14×85
=25
Hence, 8P(AC|BC)=15P(B|AC)
Again, 2P(A|BC)=12
⇒P(A|BC)=14=P(A∩B)