Let A and B be two events such that P(¯¯¯¯¯¯¯¯¯¯¯¯¯¯A∪B)=16,P(A∩B)=14 and P(¯¯¯¯A)=14, where ¯¯¯¯A stands for the complement of the event A. Then, the events A and B are
P(¯A∪B)=(16)1−P(A∪B)=(16)∴P(A∪B)=1−(16)=(56)thenP(A∪B)=P(A)+P(B)−P(A∩B)(56)=(1−(14))+P(B)−(14)P(B)=(56)−1+(12)=(5−6+36)=(13)nowP(A)P(B)=(1−(14))×(13)=(34)×(13)=(14)whichisequaltoP(A∩B)soAandBareindependentbutP(A)≠P(B)hencenotequallylikely