Let A and B be two non empty sets such that n(A)=5, n(B)=6 and n(A∩B)=3.
Find (i) n(A×B),
(ii) n(B×A) and
(iii) n(A×B)∩(B×A)
(i) n(A×B)=n(A)×n(B)=(5×6)=30
(ii) n(B×A)=n(B)×n(A)=(6×5)=30
(iii) Given: n(A∩B)=3
∴ A and B have 3 elements in common.
So, (A×B) and (B×A) have 32=9 elements in common.
Hence, n(A×B)∩(B×A)=9