The correct option is B e
A(2,1,−3), B(β,α2,0)
|−−→AB|=3=√(β−2)2+(α2−1)2+9
Squaring both sides
⇒9=(β−2)2+(α2−1)2+9
⇒0=(β−2)2+(α2−1)2
∴β=2, α2=1
Now when α=1,
limx→β(x−α2)1x−(α+1)=limx→2 (x−1)1x−2=eλ
where λ=limx→2 (x−1−1)×1x−2=limx→2 x−2x−2=1
limx→β(x−α2)1x−(α+1)=e1=e
Now when α=−1,
limx→β(x−α2)1x−(α+1)=limx→2 (x−1)1x=112=1