Let A and B be two sets such that : n (A) = 20 , n(A∪B)=42 and n(A∩B)=4. Find
(i) n (B) (ii) n (A - B)
(iii) n (B - A)
(i) n (A) = 20, n(A∪B)=42 and n(A∩B)=4, to find n (B)
We know n(A∪B)=n(A)+n(B)−(A∩B)
⇒42=20+n(B)−4
⇒42=16+n(B)
⇒n(B)=42−16
= 26
∴n(B)=26
(ii) To find : n (A - B)
We know that if A and B are disjoint sets, then
A∩B=ϕ
∴n(A∪B)=n(A)+n(B)−(A∩B)
= n(A)+n(B)−n(ϕ)
⇒n(A∪B)=n(A)+n(B) [∴n(ϕ)=0]
Now,
A=(A−B)∪(A∩B)
i.e. A is the disjoint union A - B and A∩B
∴n(A)=n(A−B)∪(A∩B)
=n(A−B)+n(A∩B) [∵A−B andA∩B are disjoint]
⇒20=n(A−B)+4
⇒n(A−B)=20−4
= 16
∴n(A−B)=16
(iii) To find : B - A
On a similar we have B is the disjoint union of B - A and A∩B i.e. B=(B−A)∪(a∩B)
∴n(B)=n(B−A)+n(A∩B)
⇒26=n(B−A)+4 [ using (i)]
⇒n(B−A)=26−4
= 22
∴n(B−A)=22