Given : AB=A and BA=B
ABA=A2⇒AB=A2⇒A2=A
Similarly, B2=B
Now, (A+B)2=(A+B)(A+B)
=A2+B2+AB+BA
=A+B+A+B
=2(A+B)
and (A+B)3=(A+B)2(A+B)
=2(A+B)(A+B)
=2(A2+B2+AB+BA)
=2(A+B+A+B)
=4(A+B)
Hence, (A+B)n=2n−1(A+B)
For n=10, we have
(A+B)10=29(A+B)
Hence, k=512