The correct options are
B If A is non-singular, then det(B−I)=det(B+I), where I is an identity matrix.
C If A and B are symmetric matrices of order 3, then A is singular.
If A is non-singular, then |A|≠0
Given, AB−BA=A
⇒|AB−BA|=|A| ⋯(1)
Then B can't be a null matrix as if B is a null matrix, then LHS of eqn(1) is zero which contradicts |A|≠0.
AB−BA=A
⇒AB−A=BA
⇒A(B−I)=BA
⇒|A||B−I|=|B||A|
⇒|B−I|=|B| ⋯(2) (∵|A|≠0)
Also, AB=BA+A
⇒AB=(B+I)A
⇒|A||B|=|B+I||A|
⇒|B|=|B+I| ⋯(3)
From (2) and (3),
|B−I|=|B+I|
If A and B are symmetric matrices of order 3, then AT=A and BT=B
Now, (AB−BA)T
=(AB)T−(BA)T
=BTAT−ATBT
=BA−AB
=−(AB−BA)
Hence, AB−BA is a skew-symmetric matrix of order 3 (odd).
∴|AB−BA|=0
⇒|A|=0 [From (1)]
⇒A is singular.
If A and B are skew-symmetric matrices of order 3, then AT=−A and BT=−B
Again, (AB−BA)T=−(AB−BA)
Hence, AB−BA is a skew-symmetric matrix of order 3 (odd).
∴|AB−BA|=0
⇒|A|=0
⇒A is singular.