Given quadratic equation is ax2+bx−9=0
a3+b3+27ab=729⇒a3+b3−729+27ab=0⇒a3+b3+(−9)3=3ab(−9)
⇒a+b−9=0 or a=b=−9
As a>b>0, so a+b−9=0
Now, f(x)=ax2+bx−9
Putting x=1, we get
f(1)=a+b−9=0
So the quadratic equation has one root as 1
Other root =−9a
Therefore, α=−9a, β=1
⇒4β−aα=4+9=13