Let A, B and C are the angles of a plane triangle and tan A2=13, tanB2=23.Then tan C2 is equal to
A+B+C=π∴ tan(A+B2)=tan(π2−C2)⇒tanA2+tanB21−tanA2.tan B2=cot C2⇒ 13+231−13.23=97=cotC2∴ tan C2=79
If A+B+C=π then,tanA2⋅tanB2+tanB2⋅tanC2+tanC2⋅tanA2 =