Let A, B and C be the sets such that A∪B=A∪C and A∩B=A∩C. Show that B=C.
We know that A=A∩(A∪B) and A=A∪(A∩B)
Now A∩B=A∩C and A∪B=A∪C
∴ B=B∪(B∩A)=B∪(A∩B)
=B∪(A∩C) [∵ A∩B=A∩C]
=(B∪A)∩(B∪C) (By distributive law)
=(A∪B)∩(B∪C)
=(A∪C)∩(B∪C) [∵ A∪B=A∪C]
=(C∪A)∩(C∪B)
=C∪(A∩B) (By distributive law)
=C∪(A∩C) [∵ A∩B=A∩C]
=C∪(C∩A)=C Hence B=C