ThepointsA,B&CareA(x1,y1)=(2,3),B(x2,y2)=(3,b)&C(x3,y3)=(5,7)respectively..(A)NowarΔABCwithverticesA(x1,y1),B(x2,y2)&C(x3,y3)isarΔABC=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)].∴arΔABC=12[2(b−7)+3(7−3)+5(3−b)]=12(given)⟹−3b+13=1⟹3b=12⟹b=4.(B)IfA,B&CarecollinearthenarΔABC=0−3b+13=0⟹3b=13(C)BdividesthelineABCintheratioλ:1.Usingsectionformula(3,b)=(5×λ+2×1λ+1,7×λ+3×1λ+1)=(5λ+2λ+1,7λ+3λ+1).∴5λ+2λ+1=3⟹5λ+2=3λ+3⟹2λ−1=0⟹4λ−2=0⟹4λ+4−4−2=0⟹4(λ+1)=6.(D)b=4.SotheverticesofΔABCareA(x1,y1)=(2,3),B(x2,y2)=(3,b)&C(x3,y3)=(5,7).Usingdistanceformula.AB=√(2−3)2+(3−4)2units=√2units,BC=√(3−5)2+(4−7)2units=√13unitsandAC=√(2−5)2+(4−7)2units=√25=5units.So5units>√13units>√2units.∴Thegreatestsideis5units.ListIListII∴A⟶ 3⇒4B⟶4⇒13C⟶1⇒6D⟶2⇒5