The correct option is B 7
Since, a ,b and c satisfies
[abc]⎡⎢⎣197827737⎤⎥⎦=[000]
So, we get the equations
a+8b+7c=0
9a+2b+3c=0
7a+7b+7c=0 or a+b+c=0
Since , b=6, so the equations become
a+48+7c=0 .....(1)
9a+12+3c=0 .....(2)
a+6+c=0 .....(3)
Subtracting (3) from (1), we get
c=−7
Using equation (3), we get a=1.
So, we have a=1,b=6,c=−7
So, the equation ax2+bx+c=0 becomes x2+6x−7=0
Since α and β are the roots of this equation,
So, α+β=−ba=−61=−6
and αβ=ca=−71=−7
Now, ∑∞n=0(1α+1β)n=∑∞n=0(α+βαβ)n
=∑∞n=0(−6−7)n=∑∞n=0(67)n
=1+67+(67)2+(67)3+...
This is an infinite G.P.. S∞=a1−r
∑∞n=0(1α+1β)n=11−67=7