The correct option is A sinθ+1
Let
k=a+ba+ba+ba+...
⇒k=a+bk
⇒k2−ak−b=0
⇒k=a±√a2+4b2
x2−x+sin2θcosθ=xsinθ(2−sinθ)
⇒x2−x(2sinθ+cos2θ)+2sinθcos2θ=0⇒(x−2sinθ)(x−cos2θ)=0
⇒x=2sinθ,cos2θ
When π4<θ<π2, cos2θ<2sinθ
So,
a=2sinθ and b=cos2θ
k=2sinθ±√4sin2θ+4cos2θ2=2sinθ±22=sinθ±1
As a,b is always positive in the given range, so
k=sinθ+1