wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let A,B,C and D be four points on the ellipse
x2a2+y2b2=1,a>b, such that AB and CD cut its major axis at two distinct equidistant points from centre.
Let α,β,γ,δ represent eccentric angles of A,B,C and D respectively. Then
tanα2tanβ2tanγ2tanδ2=

Open in App
Solution

A(acosα,bsinα),B(acosβ,bsinβ)
Equation of AB
ybsinα=b(sinαsinβ)a(cosαcosβ)(xacosα)
xacos(α+β2)+ybsin(α+β2)=cos(αβ2)
Equation of CD
xacos(γ+δ2)+ybsin(γ+δ2)=cos(γδ2)

Magnitude of x-intercepts are equal
acos(αβ2)cos(α+β2)=acos(γδ2)cos(γ+δ2)
cos(αβ2)cos(α+β2)cos(αβ2)+cos(α+β2)=cos(γδ2)cos(γ+δ2)cos(γδ2)+cos(γ+δ2)
tanα2tanβ2=cotγ2cotδ2
tanα2tanβ2tanγ2tanδ2=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon