A+B+C=π⇒B+C=3π4
So, 0<B,C<3π4
Now, tanBtanC=p
⇒sinBsinCcosBcosC=p⇒cosBcosC−sinBsinCcosBcosC+sinBsinC=1−p1+p⇒cos(B+C)cos(B−C)=1−p1+p⇒cos(B−C)=−1+p√2(1−p)
We know that,
0≤B−C<3π4⇒−1√2<cos(B−C)≤1⇒−1√2<−1+p√2(1−p)≤1⇒−√2≤1+p(1−p)<1
1+p(1−p)≥−√2⇒p+1p−1−√2≤0⇒p−(√2+1)2p−1≥0⇒p<1 or p≥(√2+1)2 ⋯(1)
1+p(1−p)<1⇒2pp−1>0⇒p<0 or p>1 ⋯(2)
From (1) and (2),
p<0 or p≥(√2+1)2
Hence, the minimum positive value of [p] is 5.