wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let a,b,c be a positive real numbers θ=tan1a(a+b+c)bc+tan1b(a+b+c)ca+tan1c(a+b+c)ab, then tanθ

A
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
3π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is D 0
θ=tan1a(a+b+c)bc+tan1b(a+b+c)ac+tan1c(a+b+c)ab

α=tan1a(a+b+c)bc

β=tan1b(a+b+c)ac

γ=tan1c(a+b+c)ab

tanα=a(a+b+c)bc

tanβ=b(a+b+c)ac

tanγ=c(a+b+c)ab

tanα+tanβ+tanγ=a(a+b+c)bc+b(a+b+c)ac+c(a+b+c)ab

=(a+b+c)32abc

=tanαtanβtanγ

tanθ=[(tanα+tanβ+tanγ)tanαtanβtanγ1tanαtanβtanβtanγtanγtanα]

tanθ=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon