Let a, b, c be complex such that ab+bc+ca=12,(a+b+c)=2,abc=4 then the value of 1ab+c−1+1bc+a−1+1ac+b−1 is
−29
ab+bc+ca=12;a+b+c=2;abc=4
1ab+c−1+1bc+a−1+1ac+b−1=?
1ab+c−1=1ab+[2−a−b]−1 (∵a+b+c=2
=1ab−a−b+1
=1(a−1)(b−1)
∴1ab+c−1+1bc+a−1+1ac+b−1
=1(a−1)(b−1)+1(c−1)(b−1)+1(a−1)(c−1)
=c−1+b−1+a−1(a−1)(b−1)(c−1)
=∑a−3∑abc−∑ab+∑a−1
=2−34−12+2−1
=−29