Let a,b,c be in arithmetic progression. Let the centroid of the triangle with vertices (a,c), (2,b) and (a,b) be (103,73). If α,β are the roots of the equation ax2+bx+1=0, then the value of α2+β2−αβ is
None of the option is correct.
Since, a, b, c are in AP
∴2b=a+c
Now, a+2+a=10
∴a=4
And, c+2b=7
⇒c+a+c=7
⇒2c=3
∴c=32
∴b=7−c2=114
Now,
α+β=−ba=−1116
α×β=ca=38
Now, α2+β2−αβ=(α+β)2−3αβ
⇒(−1116)2−338=−167256