Let a, b, c be real numbers with a2+b2+c2=1 and a≠0. Then the equation ∣∣
∣∣ax−by−cbx+aycx+abx+ay−ax+by−ccy+bcx+acy+b−ax−by+c∣∣
∣∣=0 represents:
A
A circle
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
A pair of straight lines
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
A straight line
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
A parabola
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C A straight line Given, ∣∣
∣∣ax−by−cbx+aycx+abx+ay−ax+by−ccy+bcx+acy+b−ax−by+c∣∣
∣∣=0
Applying C1→aC1+bC2+cC3
⇒∣∣
∣
∣∣(a2+b2+c2)xbx+aycx+a(a2+b2+c2)y−ax+by−ccy+b(a2+b2+c2)cy+b−ax−by+c∣∣
∣
∣∣=0 ∵a2+b2+c2=1 we have ∣∣
∣∣xbx+aycx+ay−ax+by−ccy+b1cy+b−ax−by+c∣∣
∣∣=0
Applying C2→C2−bC1,C3→C3−cC1 ⇒∣∣
∣∣xayay−ax−cb1cy−ax−by∣∣
∣∣=0
Applying R3→R3+xR1+yR2, we get ⇒∣∣
∣
∣∣xayay−ax−cbx2+y2+100∣∣
∣
∣∣=0
⇒(x2+y2+1)(aby+a2x+ac)=0⇒ax+by+c=0
Clearly, it represents a straight line.