C1→aC1Δ=1a∣∣
∣
∣∣a2x−aby−acbx+aycx+aabx+a2y−ax+by−ccy+bacx+a2cy+b−ax−by+c∣∣
∣
∣∣Applying C1→C1+bC2+cC3Δ=1a∣∣
∣
∣∣(a2+b2+c2)xay+bxcx+a(a2+b2+c2)yby−c−axcy+b(a2+b2+c2)b+cy−ax−by+c∣∣
∣
∣∣Δ=1a∣∣
∣∣xay+bxcx+ayby−c−axb+cy1b+cyc−ax−by∣∣
∣∣,as a2+b2+c2=1C2→C2−bC1 and C3→C3−cC1then Δ=1a∣∣
∣∣xayay−c−axb1cy−ax−by∣∣
∣∣
=1ax∣∣
∣
∣∣x2axyaxy−c−axb1cy−ax−by∣∣
∣
∣∣R1→R1+yR2+R3Δ=1ax∣∣
∣
∣∣x2+y2+100y−c−axb1cy−ax−by∣∣
∣
∣∣
On expanding along R1Δ=(x2+y2+1)axax(ax+by+c)=(x2+y2+1)(ax+by+c)Given Δ=0⇒ax+by+c=0, which represents a straight line.
[∵x2+y2+1≠0,being +ve].