wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let a,b,c be the roots of the equation px3+qx2+rx+s=0. If ∣ ∣ ∣bcb2+bcc2+bca2+acacc2+aca2+abb2+abab∣ ∣ ∣=27, a+b+c0 and a2+b2+c2=3, then the value of 3p+q is

Open in App
Solution

Let
Δ=∣ ∣ ∣bcb2+bcc2+bca2+acacc2+aca2+abb2+abab∣ ∣ ∣

Multiplying R1,R2,R3 by a,b,c respectively,
and then taking a,b,c common from C1,C2, and C3, we get
Δ=∣ ∣bcab+acac+abab+bcacbc+abac+bcbc+acab∣ ∣

Now, using R1R1+R2+R3

Δ=∣ ∣ab+ac+bcab+ac+bcab+ac+bcab+bcacbc+abac+bcbc+acab∣ ∣


Δ=(ab+bc+ca)∣ ∣111ab+bcacbc+abac+bcbc+acab∣ ∣

Now, applying C2C1C2, and C3C1C3, we get
Δ=(ab+bc+ca)∣ ∣100ab+bcab+bc+ca0ac+bc0ab+bc+ca∣ ∣

Δ=(ab+bc+ca)3
27=(ab+bc+ca)3ab+bc+ca=3

and a2+b2+c2=3,
(a+b+c)2=a2+b2+c2+2(ab+bc+ca)
a+b+c=±3
a+b+c=3 (a+b+c0)

So,
a+b+c=qp=3
3p+q=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Evaluation of Determinants
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon