Let a, b, c be the sides of a triangle, no two of them are equal and λ∈R. If the roots of the equation x2+2(a+b+c)x+3λ( ab + bc +ca ) = 0 are real, then
<
x2+2(a+b+c)x+3λ (ab+bc+ ca) = 0
since roots are real, D ≥ 0
⇒ 4(a+b+c)2−4.3λ (ab+bc+ca) ≥ 0
⇒ (a+b+c)2−3λ(ab+bc+ca)≥ 0
⇒ a2+b2+c2≥(3λ−2) (ab+bc+ ca)
⇒a2+b2+c2(ab+bc+ca)≥(3λ−2)⋯⋯(i)
We know that in △ ABC , cos A = b2+c2−a22bc <1
⇒ b2+c2−a2 < 2bc ....(ii)
Similarly ⇒ c2+a2−b2< 2ca....(iii) and ⇒ a2+b2−c2<2ab ...(iv)
Adding all these we get ⇒ a2+b2+c2 < 2 (ab + bc + ca )
⇒ a2+b2+c2ab+bc+ca < 2
Hence from (i) we have (3λ−2)<2 ⇒ λ < 43