wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let a, b, c be the sides of a triangle whose perimeter is p and area is A, then

A
p327(a+cb)(b+ca)(a+bc)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
p23(a2+b2+c2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
a2+b2+c243A
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
p4256A2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
B p23(a2+b2+c2)
C a2+b2+c243A
In ΔABC, b+ca>0, c+ab>0, a+bc>0
So, (b+ca)+(c+ab)+(+a+bc)3{(b+ca)(c+ab)(a+bc)}13
p327(b+ca)(c+ab)(a+bc)
Also (a+b+c)+(b+ca)+(c+ab)+(a+bc)4[(a+b+c)(b+ca)(c+ab)(a+bc)]14
2p4((16A)2)14p264A
and A34(p3)2 (for equilateral triangle a=b=c=p3)
p2=(a+b+c)2=(a2+b2+c2)+2(ab+bc+ca)
p2=3(a2+b2+c2)2(a2+b2+c2abbcca)
p23(a2+b2+c2) (equality holds iff a=b=c)
A34(a2+b2+c2)3a2+b2+c243A

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Applications
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon