The correct options are
A P3≥27(b+c−a)(c+a−b)(a+b−c)
B P2≤3(a2+b2+c2)
C a2+b2+c2≥4√3A
In △ABC,b+c−a>0,c+a−b>0,a+b−c>0
So, (b+c−a)+(c+a−b)+(a+b−c)3≥{(b+c−a)(c+a−b)(a+b−c)}13
⇒a+b+c3≥{(b+c−a)(c+a−b)(a+b−c)}13
Cubing both sides we get
⇒P3≥27(b+c−a)(c+a−b)(a+b−c)
Also,(a+b+c)+(b+c−a)+(c+a−b)+(a+b−c)4>(a+b+c)(b+c−a)(c+a−b)(a+b−c)14
⇒2a+2b+2c4≥(a+b+c)(b+c−a)(c+a−b)(a+b−c)14
⇒2P4>16A14
⇒P2>2A14
⇒P>4A14
⇒P4=256A
For a given parameter, equilateral triangle has the largest area, so the area of triangle
A≥√34(P3)2
for an equilateral triangle a=b=c=P3
Now, P2=(a+b+c)2
=a2+b2+c2+2(ab+bc+ca)
=3(a2+b2+c2)−2(a2+b2+c2−ab−bc−ca)
≤3(a2+b2+c2)
equality holds if and only if a=b=c
Thus, A≤√34a2+b2+c23
⇒a2+b2+c2≥4√3A