Let a, b, c be the sides of the triangle. No two of them are equal and λ∈R.
If the roots of the equation x2+2(a+b+c)x+3λ(ab+bc+ca)=0 are real then :
D≥0⇒4(a+b+c)2−12λ(ab+bc+ca)≥0
⇒λ≤a2+b2+c23(ab+bc+ca)+23......(1)
Since |a−b|<c⇒a2+b2−2ab<c2......(2)
|b−c|<a⇒b2+c2−2bc<a2......(3)
|c−a|<b⇒c2+a2−2ca<b2.......(4)
Adding (2),(3) and (4)
a2+b2+c2−2(ab+bc+ca)<0
⇒a2+b2+c2ab+bc+ca<2.
From (1),λ<23+23=43.