Let a,b,c be three complex numbers satisfying the equation |z|=1. If a+bcosα+csinα=0, where α∈(0,π2), then which of the following is incorrect?
A
b2+c2=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
b2−c2=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
a=−beiα
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
a=−be−iα
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bb2−c2=0 Given : a+bcosα+csinα=0 ⇒−a=bcosα+csinα⇒|−a|2=(bcosα+csinα)(¯bcosα+¯csinα)⇒|a|2=|b|2cos2α+|c|2sin2α+(b¯c+c¯b)sinαcosα⇒1=1+(bc+cb)sinαcosα(∵|a|=|b|=|c|=1)⇒(bc+cb)sinαcosα=0⇒b2+c2=0(α∈(0,π2))⇒c=±bi⇒a=−(bcosα±bisinα)∴a=−be±iα