Let a,b,c be three complex numbers whose modulus is 1. If a+bcosα+csinα=0, where α∈(0,π2), then
A
b2+c2=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
b2−c2=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a=−beiα
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
a=−be−iα
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are Ab2+c2=0 Ca=−beiα Da=−be−iα a+bcosα+csinα=0⇒a=−bcosα−csinα⇒|a|2=|bcosα+csinα|2⇒1=(bcosα+csinα)(¯bcosα+¯csinα)⇒b¯bcos2α+c¯csin2α+12(b¯c+¯bc)sin2α=1⇒12(b¯c+¯bc)sin2α=0 As α∈(0,π2) ⇒(b¯c+¯bc)=0⇒b¯b=−c¯c⇒b2=−c2⇒b2+c2=0⇒c=±ib