Given,
a+b+c=25⋯(1)
2a=2+b⋯(2)
c2=18b⋯(3)
Substituting the values of a and b in terms of c from (2) and (3) in (1), we get
12(2+c218)+c218+c=25
⇒c2+36+2c2+36c=25.36
⇒3c2+36c−864=0
⇒c2+12c−288=0
(c+24)(c−12)=0
⇒c=12,−24
∵a,b,c are between 2 and 18, ∴c≠−24
Hence c=12
from (3) b=c218
=12218
=14418
b=8
from (2) a=2+b2=2+82=5
Hence, a=5,b=8,c=12