Let a, b, c be three real numbers such that a < b < c. Let f(x) be continuous ∀ x ∈[a,c] and differentiable ∀ x ∈(a,c). If f′′(x)>0 ∀ x ∈(a,c) then
(c−b) f(a)+(b−a) f(c)>(c−a) f(b)
(c−b) f(a)+(a−c) f(b)<(a−b) f(c)
f(a)<f(b)<f(c)
None of these
By LMVT,
f(b)−f(a)b−a<f(c)−f(b)c−b