Let a→,b→,c→ be three unit vectors such that a→+b→+c→=0. If λ=a→.b→+b→.c→+c→.a→ and d→=a→×b→+b→×c→+c→×a→, then the ordered pair λ,d→ is
32,3a→×c→
-32,3c→×b→
-32,3a→×b→
32,3b→×c→
Explanation for correct option:
Finding the ordered pair:
a,b,c be three unit vectors. [Given]
∴a→=b→=c→=1.
Since, a→+b→+c→=0, we get,
a→+b→+c→.a→+b→+c→=0a→.a→+a→.b→+a→.c⇀+b⇀.a⇀+b→.b→+b.→c⇀++c→.a→+c→.b→+c→.c→=0a→2+b→2+c→2+2(a→.b→+b.→c→+c→.a→)=01+1+1+2(a→.b→+b.→c→+c→.a→)=0[∵a=b=c=1]3+2λ=0[∵λ=a→.b→+b→.c→+c→.a→]λ=-32
Calculating the value of d→
d→=a→×b→+b→×c→+c→×a→=a→×b→+b→×-a→-b→+-a→-b→×a→[∵a→+b→+c→=0]=a→×b→+b→×-a→-b→×b→-a→×a→)+(-b→×a→=a→×b→-b→×a→-b→×a→[∵a→×a→=0]=a→×b→+a→×b→+a→×b→[∵a→×b→=-b→×a→]=3a→×b→
Therefore, the ordered pair λ,d→ is -32,3(a→×b→.
Hence, option (C) is the correct answer.