Let a→,b→ and c→ be three unit vectors such that a→-b→2+a→-c→2=8 , then a→+2b→2+a→+2c→2is equal to
Step 1: Solving the given equation
a,b,c be three unit vectors.
⇒a=b=c=1
a→-b→2+a→-c→2=8⇒a→-b→.a→-b→+a→-c→.a→-c→=8∵a→.a→=a2⇒a→.a→+a→.-b→+-b→.a⇀+-b→.-b→+a→.a→+a→.-c→+-c→.a→+-c→.-c→=8⇒a→2-2a→.b→+b→2+a⇀2-2a→.c→+c→2=8⇒1-2a→.b→+1+1-2a→.c→+1=8⇒4-2a→.b→+a→.c→=8⇒-2a→.b→+a→.c→=8-4⇒a→.b→+a→.c→=-2
Step 2: Finding a→+2b→2+a→+2c→2
a→+2b→2+a→+2c→2=a2+4a→.b→+4b→2+a2+4a→.c→+4c→2∵a+b2=a2+2ab+b2=1+4a→.b→+4.1+1+4a→.c→+4.1∵a=1=10+4(a→.b→)+a→.c→=10-8∵(a→.b→)+a→.c→=-2=2
Hence, the value of a→+2b→2+a→+2c→2 is equal to 2.