wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let a, b, c, d be the position vectors of the four distinct points A, B, C, D. If b -a =c -d , then show that ABCD is a parallelogram.

Open in App
Solution

Given: a, b, c and d are the position vectors of the four distinct points A, B, C and D.
Also, we have, b - a =c - d.
AB = DC
Again,
b - a = c - d b - c = a - d CB = DA
Consequently, AB DC , CB DA and AB = DC , CB = DA. Thus two of its opposite sides are equal and parallel.
Hence, ABCD is a parallelogram.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Parallelograms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon