Let a,b,c,d,e be the observations with mean m and standard deviation s. The standard deviation of the observations a+k, b+k, c+k , d+k, e+k is
s
The given observations are a, b, c, d, e
Mean = m = a+b+c+d+e5
⇒∑xi=a+b+c+d+e=5m ....(i)
Standard deviation , s = √∑x2i5−m2
Now, consider the observations a+k , b+k , c+k , d+k , e+k
New mean
= (a+k)+(b+k)+(c+k)+(d+k)+(e+k)5
=a+b+c+d+e+5k5
= 5m+5k5
= m + k
∴ New standard deviation
= √∑(xi+k)25−(m+k)2
= √∑(x2i+k2+2xik)5−(m2+k2+2mk)
√∑x2i5+∑k25+∑2xik5−(m2+k2+2mk)
√∑x2i5−m2+5k25−k2+2k∑xi5−2mk
=√∑x2i5−m2+2k×5m5−2mk
= √∑x2i5−m2=8
Hence, the correct answer is option (a).