Let a,b,c∈R. If f(x)=ax2+bx+c is such that a+b+c=3 and f(x+y)=f(x)+f(y)+xy, ∀x,y∈R then∑n=110f(n)= is equal to
165
190
255
330
Explanation for correct answer:
Finding the nthterm:
Given,
f(x)=ax2+bx+cf(1)=a+b+c=3
f(x+y)=f(x)+f(y)+xy
Substituting x=1,y=1
f(1+1)=f(1)+f(1)+1f(2)=2f(1)+1=2×3+1∵f(1)=3=7
Similarly x=2,y=1
f(2+1)=f(2)+f(1)+1×2f(3)=7+3+2∵f(1)=3,f(2)=7=12
To find ∑n=110f(n)
∑n=110f(n)=f(1)+f(2)+f(3)+...+f(n)=3+7+12+...=S
Sn=3+7+12+...+tn
Again Sn=3+7+12+...+tn-1+tn
subtracting two-equation
Sn=3+7+12+...+tn-1+tn-Sn=-3-7-12-...-tn-1-tn0=3+4+5+...-tn⇒tn=3+4+5+...+nterms
tn=n(2×3+(n-1)1)2∵a1+a2+...+=n(2a+(n-1)d)2whered=1=n(n+6-1)2=n(n+5)2
∑n=110tn=∑n=110n2+5n2=∑n=110n22+5n2=12∑n=110n2+5∑nn=110=1210×11×216+510×112=1210×112213+5=5×11221+153=552363=55×6=330
Thus, ∑n=110f(n)=330
Hence, option (D) is the correct answer.