wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let a,b,cR. If f(x)=ax2+bx+c is such that a+b+c=3 and f(x+y)=f(x)+f(y)+xy, x,yR thenn=110f(n)= is equal to


A

165

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

190

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

255

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

330

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D

330


Explanation for correct answer:

Finding the nthterm:

Given,

f(x)=ax2+bx+cf(1)=a+b+c=3

f(x+y)=f(x)+f(y)+xy

Substituting x=1,y=1

f(1+1)=f(1)+f(1)+1f(2)=2f(1)+1=2×3+1f(1)=3=7

Similarly x=2,y=1

f(2+1)=f(2)+f(1)+1×2f(3)=7+3+2f(1)=3,f(2)=7=12

To find n=110f(n)

n=110f(n)=f(1)+f(2)+f(3)+...+f(n)=3+7+12+...=S

Sn=3+7+12+...+tn

Again Sn=3+7+12+...+tn-1+tn

subtracting two-equation

Sn=3+7+12+...+tn-1+tn-Sn=-3-7-12-...-tn-1-tn0=3+4+5+...-tntn=3+4+5+...+nterms

tn=n(2×3+(n-1)1)2a1+a2+...+=n(2a+(n-1)d)2whered=1=n(n+6-1)2=n(n+5)2

n=110tn=n=110n2+5n2=n=110n22+5n2=12n=110n2+5nn=110=1210×11×216+510×112=1210×112213+5=5×11221+153=552363=55×6=330

Thus, n=110f(n)=330

Hence, option (D) is the correct answer.


flag
Suggest Corrections
thumbs-up
24
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon