We have,
a+bp13+cp23=0
Multiplying both sides by p13, we get
ap13+bp23+cp=0
Multiplying (i)by b and (ii) by c and subtracting, we get
⎛⎜⎝ab+b2p13+bcp23⎞⎟⎠−⎛⎜⎝acp13+bcp23+c2p⎞⎟⎠=0
⇒(b2−ac)p13+ab−c2p=0
⇒b2−ac=0 and ab−c2p=0
⇒b2=ac and ab=c2p
⇒b2=ac and a2b2=c4p2
⇒a2(ac)=c4p2
⇒a3c−p2c4=0
⇒(a3−p2c3)c=0
⇒a3−p2c3=0 or c=0
Now,
a3−p2c3=0
p2=a3c3⇒(p2)13=(a3c3)13⇒⎛⎜⎝p13⎞⎟⎠2={(ac)3}13⇒⎛⎜⎝p13⎞⎟⎠2=ac
This is not possible as p1/3 is irrational and ac is rational.
∴a3−p2c3≠0
Hence c=0
Putting c=0 in b2−ac=0, we get b=0
Putting b=0 and c=0 in a+bp13+cp23=0 we get a=0
Hence a=b=c=0