Let A+B+C=π and α=sin3(B+C)⋅sin(2C+A),β=sin3(A+C)⋅sin(2A+B),γ=sin3(A+B)⋅sin(2B+C)
are roots of the cubic equation x3+ax2+bx+c=0, then the value of a is
A
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
sinAsinBsinC
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
cosAcosBcosC
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A0 α=sin3(B+C)⋅sin(2C+A)=sin3(π−A)⋅sin(2C+π−B−C)=sin3A⋅sin(B−C)=sin2AsinAsin(B−C)=sin2Asin(B+C)sin(B−C)=sin2A(sin2B−sin2C)=sin2A(sin2B−sin2C)
Similarly, β=sin2B(sin2C−sin2A)γ=sin2C(sin2A−sin2B)